Самые дальние звезды млечного пути видимые невооруженным глазом. Какое расстояние до самой далекой галактики? Как понять насколько далеко находится звезда

Красота

На границе галактики

Самые далёкие космические объекты расположены так далеко от Земли, что даже световые годы являются смехотворно малым мерилом их удалённости. Например, самоё близкое к нам космическое тело – Луна расположено всего в 1,28 световых секунды от нас. Как же представить себе расстояния, которые световой испульс не в силах преодолеть за сотни тысяч лет? Существует мнение, что измерять такое колоссальное пространство классическими величинами некорректно, с другой стороны других у нас нет.

Самая далёкая звезда нашей Галактики расположена в направлении созвездия Весов и удалена от Земли на расстояние, которое может преодолеть свет за 400 тыс. лет. Ясно, что эта звезда находится у пограничной черты, в так называемой зоне галактического гало. Ведь расстояние до этой звезды примерно в 4 раза превышает диаметр воображаемых просторов нашей Галактики. (Диаметр Млечного Пути оценивается примерно в 100 тыс. световых лет.)

За пределами галактики

Удивительно, что самую далекую, довольно-таки яркую звезду открыли только в наше время, хотя ее наблюдали и ранее. По непонятным соображениям астрономы не обратили особого внимания на слабо светящееся пятнышко на звездном небосклоне и различающееся на фотопластинке. Что же получается? Люди видят звезду в течение четверти века и... не замечают ее. Совсем недавно американскими астрономами из обсерватории имени Лоуэлла была открыта еще одна из наиболее отдаленных звезд в периферийных пределах нашей Галактики.

Эту звезду, уже потускневшую от «старости», можно поискать на небосклоне в расположении созвездия Девы, на расстоянии примерно 160 тыс. световых лет. Подобные открытия в темных (в прямом и переносном смысле слова) участках Млечного Пути позволяют внести важные корректировки при определении истинных значений массы и размеров нашей звездной системы в сторону их значительного увеличения.

Однако, даже самые далёкие звёзды в нашей галактике расположены относительно близко. Самые далёкие из известных науке квазаров расположены более чем в 30 раз дальше.

Кваза́р (англ. quasar - сокращение от QUASi stellAR radio source - «квазизвёздный радиоисточник») представляет собой класс внегалактических объектов, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» - звёзд.

Не так давно американские астрономы обнаружили три квазара, относящиеся к числу самых "старых" известных науке объектов во Вселенной. Их удаленность от нашей планеты составляет более 13 миллиардов световых лет. Расстояния до далеких космических образований определяются с помощью так называемого "красного смещения" – сдвига в спектре излучения быстро движущихся объектов. Чем дальше они находятся от Земли, тем быстрее, в соответствии с современными космологическими теориями, они удаляются от нашей планеты. Предыдущий рекорд дальности был зафиксирован в 2001 году. Красное смещение обнаруженного тогда квазара оценивалось величиной 6.28. Нынешняя троица имеет смещения 6.4, 6.2 и 6.1.

Темное прошлое

Открытые квазары всего на 5 процентов "моложе" Вселенной. Что было до них, сразу после Большого Взрыва – зафиксировать сложно: водород, образовавшийся через 300 000 лет после взрыва, блокирует излучение самых ранних космических объектов. Только рост числа звезд и последовавшая ионизация водородных облаков позволяет разорвать завесу над нашим "темным прошлым".

Для получения и проверки подобной информации требуется совместная работа нескольких мощных телескопов. Ключевая роль в этом деле принадлежит космическому телескопу Хаббл и цифровому телескопу Слоан, расположенному в обсерватории Нью-Мексико.

Представляя себе далекие звезды, мы обычно думаем о расстояниях в десятки, сотни или тысячи световых лет. Все эти светила принадлежат к нашей Галактике - Млечному Пути. Современные телескопы способны разрешить звезды в ближайших галактиках - расстояние до них может достигать десятков миллионов световых лет. Но насколько далеко простираются возможности наблюдательной техники, особенно когда ей помогает природа? Недавнее удивительное открытие Икара - самой далекой звезды во Вселенной из числа известных на сегодняшний день - свидетельствует о возможности наблюдения чрезвычайно удаленных космических феноменов.

Помощь природы

Существует явление, благодаря которому астрономам может быть доступно наблюдение наиболее дальних объектов Вселенной. Называется оно является одним из следствий общей теории относительности и связано с отклонением светового луча в поле гравитации.

Эффект линзирования заключается в том, что если между наблюдателем и источником света на луче зрения располагается какой-либо массивный объект, то , искривляясь в его гравитационном поле, создают искаженное или множественное изображение источника. Строго говоря, лучи отклоняются в поле тяготения любого тела, но наиболее заметный эффект дают, конечно, самые массивные образования во Вселенной - скопления галактик.

В случаях, когда в качестве линзы выступает малое космическое тело, например одиночная звезда, визуальное искажение источника практически невозможно зафиксировать, но яркость его может существенно возрасти. Такое событие называют микролинзированием. В истории открытия самой далекой от Земли звезды сыграли роль оба типа гравитационного линзирования.

Как произошло открытие

Обнаружению Икара способствовала счастливая случайность. Астрономы вели наблюдение одного из удаленных MACS J1149.5+2223, находящегося приблизительно в пяти миллиардах световых лет от нас. Оно интересно как гравитационная линза, благодаря особой конфигурации которой световые лучи искривляются по-разному и проходят в итоге разные расстояния до наблюдателя. Вследствие этого отдельные элементы линзированного изображения источника света должны запаздывать.

В 2015 году астрономы ждали предсказанной в рамках данного эффекта повторной вспышки сверхновой Рефсдаль в очень далекой галактике, свет от которой достигает Земли за 9,34 миллиарда лет. Ожидаемое событие действительно произошло. Но на снимках 2016-2017 годов, полученных телескопом «Хаббл», помимо сверхновой, обнаружилось еще кое-что, не менее интересное, а именно изображение звезды, принадлежащей к той же удаленной галактике. По характеру блеска определили, что это - не сверхновая, не гамма-всплеск, а обычная звезда.

Увидеть отдельное светило на таком огромном расстоянии стало возможно благодаря событию микролинзирования в самой галактике. Случайным образом перед звездой прошел объект - скорее всего, другая звезда - с массой порядка солнечной. Сам он, конечно, остался невидимым, но его поле гравитации усилило блеск источника света. В сочетании с линзирующим эффектом кластера MACS J1149.5+2223 это явление дало усиление яркости самой далекой видимой звезды в 2000 раз!

Звезда по имени Икар

Новооткрытому светилу было присвоено официальное наименование MACS J1149.5+2223 LS1 (Lensed Star 1) и собственное имя - Икар. Предыдущий рекордсмен, носивший гордый титул самой далекой звезды, которую удалось наблюдать, расположен в сто раз ближе.

Икар чрезвычайно ярок и горяч. Это голубой сверхгигант спектрального класса В. Астрономам удалось определить основные характеристики звезды, такие как:

  • масса - не менее 33 масс Солнца;
  • светимость - превышает солнечную приблизительно в 850 000 раз;
  • температура - от 11 до 14 тысяч кельвин;
  • металличность (содержание химических элементов тяжелее гелия) - около 0,006 солнечной.

Судьба самой далекой звезды

Событие микролинзирования, позволившее увидеть Икар, произошло, как мы уже знаем, 9,34 миллиарда лет назад. Возраст Вселенной составлял тогда всего около 4,4 миллиарда лет. Снимок этой звезды - своего рода мелкомасштабный стоп-кадр той давней эпохи.

За время, в течение которого свет, испущенный 9 с лишним миллиардов лет назад, преодолел расстояние до Земли, космологическое расширение Вселенной отодвинуло галактику, в которой жила самая далекая звезда, до расстояния в 14,4 миллиарда световых лет.

Сам же Икар, согласно современным представлениям об эволюции звезд, давно прекратил существование, ведь чем массивнее звезда, тем короче должно быть время ее жизни. Не исключено, что часть вещества Икара послужила строительным материалом для новых светил и, вполне возможно, их планет.

Увидим ли мы его снова

Несмотря на то что случайный акт микролинзирования - очень кратковременное событие, ученые имеют шанс увидеть Икара снова, и даже с большей яркостью, поскольку в крупном линзирующем скоплении MACS J1149.5+2223 множество звезд должно находиться вблизи луча зрения Икар - Земля, и пересечь этот луч может любая из них. Разумеется, есть вероятность увидеть таким же образом и другие удаленные звезды.

А может быть, когда-нибудь астрономам повезет зафиксировать грандиозный взрыв - вспышку сверхновой, которой завершила свою жизнь самая далекая звезда.

Как далеки от нас звезды?

Сколько бы мы ни вглядывались в небо темной ночью, простые наблюдения не дадут нам ответа на этот вопрос. Очевидно, что звезды очень далеки - они дальше солнца и луны (наш спутник частенько покрывает собой звезды), и, по всей вероятности, дальше всех планет. Но вот насколько далеко?

Николай Коперник был первым астрономом, который перевел рассуждения на эту тему в практическую плоскость. Как известно, Коперник построил теорию, согласно которой в центр мира помещалось Солнце, а не Земля. Это допущение помогло упростить теорию движения планет, а также объяснило некоторые странности в их поведении. Согласно Копернику Земля также вращалась вокруг Солнца - по широкой орбите с периодом в один год. Как следствие, звезды должны были видеться под разным углом в разные сезоны , скажем, весной и осенью, когда Земля находится на противоположных участках своей орбиты.

Коперник пытался найти эти смещения - параллаксы звезд , наблюдая за высотой нескольких избранных звезд на протяжении года. Но звезды не показывали никаких смещений. Очевидно, они находились слишком далеко для того, чтобы их параллаксы можно было заметить невооруженным глазом.

Даже изобретение телескопа не помогло астрономам решить этот вопрос. Параллаксы были настолько малы, что трудности при их определении многократно превышали возможности астрономов XVII-XVIII веков. Первые параллаксы были успешно измерены лишь около двухсот лет назад, после возникновения прецизионной техники наблюдений. Оказалось, что звезды находятся невероятно далеко - в несколько раз дальше, чем предполагали многие не самые оптимистические расчеты. Только вдумайтесь - даже свет, способный долететь от Земли до Луны менее чем за полторы секунды, тратит годы на путешествие от звезд к Земле! Столь большие расстояния невозможно себе даже представить!

Но и среди звезд есть такие, которые находятся к нам ближе, чем большинство, а есть такие, которые находятся дальше.

Возьмем для примера звезды - главного рисунка летнего неба. Две звезды из трех - Вега и Альтаир - относительно близки к нам. От Веги до Земли свет идет порядка 25 лет. Это эквивалентно расстоянию в 240 триллионов километров. Альтаир находится еще ближе - эта звезда входит в сотню ближайших звезд к Солнцу. Расстояние до нее измеряется 17 световыми годами.

Вега, Альтаир и Денеб - три звезды летнего треугольника, имеющие схожий блеск, но находящиеся от нас на разном расстоянии. Рисунок: Stellarium

Совсем другое дело Денеб , самая тусклая звезда в составе Летнего Треугольника, формирующая его левый верхний угол. Расстояние до Денеба столь велико, что обычным способом его не измерить - погрешность измерений велика. Для таких далеких космических объектов астрономам пришлось разработать специальные, косвенные, методы определения расстояний. Эти методы не очень точны на малых расстояниях, но хорошо работают на расстояниях в тысячи световых лет.

Оказалось, что расстояние до Денеба равняется 2750 световых лет. Эта звезда находится в 160 раз дальше от нас, чем Альтаир, и в 110 раз дальше Веги!

Сравнение Солнца (желтый кружок) и голубой звезды-сверхгиганта Денеба. Рисунок: Большая Вселенная

Денеб очень необычная звезда. Вега и Альтаир, помещенные на ее место, были бы совершенно не видны простым глазом, а Денеб наблюдается прекрасно, менее, чем вдвое уступая в блеске Альтаиру. Очевидно, яркость Денеба очень велика. Действительно, Денеб обладает совершенно фантастической светимостью - только 196000 солнц дадут такой же поток излучения, как эта голубовато-белая звезда! Посмотрите ночью на звездное небо: на нем вы не найдете звезд более высокой светимости. Ни одна из звезд, видимых невооруженным глазом (может быть, за исключением Ригеля), не светит так интенсивно, как Денеб.

Все эти ошеломительные факты о звездах стали известны исключительно благодаря тому, что мы научились определять расстояния в космосе. Но на достигнутом астрономы останавливаться не собираются: сейчас в космосе работает европейский космический телескоп Gaia , цель которого - собрать параллаксы более чем миллиарда звезд с невиданной точностью. Через несколько лет данные с Gaia помогут более точно вычислить расстояние до Денеба, и даже до еще более далеких звезд. Это позволит астрономам построить первую трехмерную карту Галактики.

Post Views: 5 985

Многие звёзды гораздо больше Солнца

Лучи света, исходящие от звёзд

Космонавты на орбите

Перед сном я очень люблю смотреть на красоту звёздного неба. Кажется, что там, наверху - царство вечной тишины и покоя. Только руку протяни, и звезда у тебя в кармане. Наши предки полагали, что звёзды могут влиять на нашу судьбу и наше будущее. Но вот на вопрос, что они собой представляют, ответит не каждый. Попробуем разобраться.

Звёзды являются основным «населением» галактик. Например, только в нашей галактике их сияет более 200 миллиардов. Каждая звезда - это огромный раскалённый светящийся газовый шар, как наше Солнце. Звезда светит, потому что выделяет колоссальное количество энергии. Эта энергия образуется в результате ядерных реакций при очень высоких температурах.

Многие из звёзд гораздо больше Солнца. А наша Земля - пылинка по сравнению с Солнцем! Представь себе, что Солнце - это футбольный мяч, а наша планета Земля по сравнению с ним маленькая, как булавочная головка! Почему же мы видим Солнце таким небольшим? Всё просто - потому что оно находится очень далеко от нас. А звёзды выглядят очень маленькими, потому что находятся
ещё гораздо-гораздо дальше. Например, луч света летит быстрее всего на свете. Он может облететь вокруг всей Земли раньше, чем ты успеешь моргнуть глазом. Так вот, Солнце так далеко, что его луч летит до нас 8 минут. А лучи от других самых близких звёзд летят к нам целых 4 года! Свет от самых дальних звёзд летит к Земле миллионы лет! Теперь становится понятно, как далеки от нас звёзды.

Но если звёзды - это Солнца, то почему они светят так слабо? Чем дальше звезда, тем шире расходятся её лучи, и свет рассеивается по всему небу. И доходит до нас только крошечная порция этих лучей.

Хотя звёзды рассыпаны по всему небосводу, мы видим их только ночью, а днём на фоне яркого рассеянного в воздухе солнечного света они не видны. Мы живём на поверхности планеты Земля и находимся как будто на дне воздушного океана, который постоянно волнуется и бурлит, преломляя лучи света звёзд. Из-за этого они кажутся нам мигающими и дрожащими. Но космонавты на орбите видят звёзды, как цветные немигающие точки.

Мир этих небесных тел очень разнообразен. Бывают звёзды-гиганты и сверхгиганты. Например, диаметр звезды Альфа в 200 тысяч раз больше, чем диаметр Солнца. Свет этой звезды проходит расстояние до Земли за 1200 лет. Если бы можно было облететь на самолете экватор гиганта, то для этого потребовалось бы 80 тысяч лет. Существуют и звёзды-карлики, которые значительно уступают по своим размерам Солнцу и даже Земле. Вещество таких звёзд отличается необыкновенной плотностью. Так, один литр вещества «белого карлика» Койпера весит около 36 тысяч тонн. Спичка, сделанная из такого вещества, весила бы около 6 тонн.

Присмотрись к звёздам. И ты увидишь, что не все они одинакового цвета. Цвет звезды зависит от температуры на их поверхности - от нескольких тысяч до десятков тысяч градусов. Звёзды красного цвета считаются «холодными». Их температура «всего» около 3-4 тысяч градусов. Температура поверхности Солнца, которое жёлто-зелёного цвета, достигает 6 тысяч градусов. Белые и голубоватые звёзды - самые горячие, их температура превосходит 10-12 тысяч градусов.

Это интересно:

иногда можно наблюдать, как с неба падают звёзды. Говорят, что когда видишь падающую звезду, надо загадать желание, и оно обязательно исполнится. Но то, что мы принимаем за падающие звёзды, - это всего-навсего маленькие камни, летящие из космического пространства. Подлетая к нашей планете, такой камень сталкивается с воздушной оболочкой и при этом так сильно раскаляется, что начинает светиться, как звёздочка. Вскоре «звёздочка», не долетев до Земли, сгорает и гаснет. Эти «космические пришельцы» называются метеорами. Если часть метеора достигает поверхности, то её называют метеоритом.

В некоторые дни года метеоры появляются на небе гораздо чаще, чем обычно. Это явление называют метеорным потоком или говорят, что идёт «звёздный дождь».

Более чем в шести тысячах световых годах от поверхности Земли находится быстро вращающаяся нейтронная звезда — пульсар Чёрная Вдова. У неё есть компаньон, коричневый карлик, которого она постоянно обрабатывает своим мощным излучением. Они обращаются друг вокруг друга каждые 9 часов. Наблюдая за ними в телескоп с нашей планеты, вы можете подумать, что этот смертельный танец никак вас не касается, что вы являетесь лишь сторонним свидетелем этого «преступления». Однако это не так. Оба участника этого действа притягивают вас к себе.

И вы тоже их притягиваете — на расстоянии в триллионы километров, с помощью гравитации. Гравитация — это сила притяжения между любыми двумя объектами, имеющими массу. Это значит, что любой объект нашей Вселенной притягивает любой другой объект, находящийся в ней, и одновременно притягивается к нему. Звёзды, чёрные дыры, люди, смартфоны, атомы — всё это находится в постоянном взаимодействии. Так почему же мы не чувствуем этого притяжения с миллиардов разных сторон?

Причины всего две — масса и расстояние. Уравнение, с помощью которого можно вычислить силу притяжения между двумя объектами, впервые было сформулировано Исааком Ньютоном в 1687 году. Понимание гравитации с тех пор несколько эволюционировало, но в большинстве случаев классическая теория тяготения Ньютона применима для вычисления её силы и сегодня.

Выглядит эта формула так — чтобы узнать силу притяжения между двумя объектами, надо массу одного умножить на массу другого, получившийся результат умножить на гравитационную постоянную, и всё это поделить на квадрат расстояния между объектами. Всё, как видим, довольно несложно. Можем даже немного поэкспериментировать. Если вы удвоите массу одного объекта, сила притяжения увеличится в два раза. Если вы «отодвинете» объекты друг от друга в те же два раза, сила притяжения составит одну четвёртую от того, что была раньше.

Сила притяжения между вами и Землёй тянет вас в направлении центра планеты, и вы ощущаете эту силу, как свой вес. Это значение равно 800 ньютонам, если вы стоите на уровне моря. Но если вы поедете к Мёртвому морю, оно увеличится на небольшую долю процента. Если же вы совершите подвиг и заберётесь на вершину Эвереста, значение снизится — опять-таки крайне незначительно.

Сила притяжения Земли воздействует на МКС, находящуюся на высоте около 400 километров, практически с той же силой, что на поверхности планеты. Если бы эта станция была водружена на огромную неподвижную колонну, основание которой стояло бы на Земле, то сила гравитации на ней составляла бы около 90% от той, что ощущаем мы. Астронавты находятся в невесомости по той простой причине, что МКС постоянно падает на нашу планету. К счастью, станция при этом движется с той скоростью, которая позволяет ей избегать столкновения с Землёй.

Летим дальше — на Луну. Это уже 400000 километров от родного дома. Сила притяжения Земли здесь составляет всего 0.03% от изначальной. Зато в полной мере ощущается гравитация нашего спутника, которая в шесть раз меньше привычной нам. Если вы решите полететь ещё дальше, сила притяжения Земли будет падать, но избавиться от неё окончательно не удастся никогда.

Когда вы находитесь на поверхности нашей планеты, то ощущаете притяжение великого множества объектов — как очень далёких, так и находящихся в непосредственной близости. Солнце, например, притягивает вас к себе с силой пол-ньютона. Если вы находитесь на расстоянии нескольких метров от своего смартфона, то вас тянет к нему не только желание проверить полученные сообщения, но и сила в несколько пиконьютонов. Это приблизительно равно гравитационному притяжению между вами и галактикой Андромеды, находящейся на расстоянии 2.5 миллиона световых лет и имеющей массу в триллионы раз больше, чем у Солнца.

Если же вы хотите совсем избавиться от гравитации, то можете использовать очень хитрый приём. Все массы, что находятся вокруг, постоянно тянут нас к себе, но как они поведут себя, если вы пророете очень глубокую скважину прямо к центру планеты и спуститесь туда, избежав каким-то образом всех опасностей, что могут встретиться на этом длинном пути? Если представить, что внутри идеально сферической Земли есть полость, то сила притяжения к её стенкам будет одинакова со всех сторон. И ваше тело неожиданно окажется в невесомости, в подвешенном состоянии — ровно посередине этой полости. Так что вы можете не чувствовать гравитацию Земли — но для этого надо оказаться ровно внутри неё. Это законы физики, и ничего с ними не поделаешь.