Пластиды. Что такое хлоропласт? Хлоропласты: строение и функции Где находятся хлоропласты в листе

Интернет

Федеральное Агентство науки и образования.

Сибирский Федеральный Университет.

Институт Фундаментальной Биологии и Биотехнологии.

Кафедра биотехнологии.

На тему: Строение и функции хлоропластов.

Выполнила: студентка

31гр.Шестопалова Н.С.

Проверила:

доцент кафедры

биотехнологии

д.б.н. Голованова Т.И.

Красноярск


1. Введение………………………………………....................................3

2. Обзор литературы…………………………………………….............4

2.1 Происхождение хлоропласта………………………………….........4

2.2 Развитие хлоропласта из пропластиды…………………………….5

2.3 Строение хлоропластов……………………………………………..7

2.4 Генетический аппарат хлоропластов……………………………....9

3. Функции хлоропластов……………………………………………...11

4. Вывод…………………………………………………………………16

5. Список используемой литературы………………………………….17


Введение:

Пластиды –это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов(высшие растения, низшие водоросли, некоторые одноклеточные организмы). У высших растений найден целый набор различных пластид(хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой которая осуществляет фотосинтетические процессы, является хлоропласт.


2.Обзор литературы:

2.1Происхождение хлоропласта.

Общепринятым в настоящее время является представление об эндосимбиотическом происхождении хлоропластов в клетках растений. Хорошо известно, что лишайники представляют собой форму сожительства (симбиоза) гриба и водоросли, при котором зеленые одноклеточные водоросли живут внутри клеток гриба. Предполагают, что таким же путем несколько миллиардов лет назад фотосинтезирующие цианобактерии (синезеленые водоросли) проникли в эукариотические клетки и затем в ходе эволюции потеряли свою автономность, передав большое число важнейших генов в ядерный геном. В результате независимая бактериальная клетка превратилась в полуавтономную органеллу, сохранившую главную исходную функцию - способность к фотосинтезу, однако формирование фотосинтетического аппарата оказалось под двойным ядерно-хлоропластным контролем. Под ядерный контроль перешли деление хлоропластов и сам процесс реализации его генетической информации, которая осуществляется в цепи событий ДНК РНК белок.

Неоспоримые доказательства прокариотического происхождения хлоропластов получены при анализе нуклеотидных последовательностей их ДНК. ДНК рибосомальных генов имеет высокую степень сродства (гомологию) у хлоропластов и бактерий. Сходная нуклеотидная последовательность обнаружена для цианобактерий и хлоропластов в генах АТФсинтазного комплекса, а также в генах аппарата транскрипции (гены субъединиц РНК-полимеразы) и трансляции. Регуляторные элементы хлоропластных генов - промоторы, локализованные в области 35-10 пар нуклеотидов до начала транскрипции, определяющие считку генетической информации, и терминальные нуклеотидные последовательности, определяющие ее прекращение, организованы в хлоропласте, как упоминалось выше, по бактериальному типу. И хотя миллиарды лет эволюции внесли массу изменений в хлоропласт, они не изменили нуклеотидную последовательность хлоропластных генов, и это является неоспоримым доказательством происхождения хлоропласта в зеленом растении от прокариотического предка, древнего предшественника современных цианобактерий.

2.2Развитие хлоропласта из пропластиды.

Хлоропласт развивается из пропластиды - маленькой бесцветной органеллы (несколько микрон в поперечнике), окруженной двойной мембраной и содержащей характерную для хлоропласта кольцевую молекулу ДНК. Пропластиды не имеют внутренней мембранной системы. Они плохо изучены ввиду их крайне малых размеров. Несколько пропластид содержится в цитоплазме яйцеклетки. Они делятся и передаются от клетки к клетке в ходе развития зародыша. Этим объясняется то обстоятельство, что генетические признаки, связанные с ДНК пластид, передаются только по материнской линии (так называемая цитоплазматическая наследственность).

В ходе развития хлоропласта из пропластиды внутренняя мембрана ее оболочки образует "впячивания" внутрь пластиды. Из них развиваются мембраны тилакоидов, которые создают стопки - граны и ламеллы стромы. В темноте пропластиды дают начало формированию предшественника хлоропласта (этиопласта), который содержит структуру, напоминающую кристаллическую решетку. При освещении эта структура разрушается и происходит формирование характерной для хлоропласта внутренней структуры, состоящей из тилакоидов гран и ламелл стромы.

В клетках меристемы содержится несколько пропластид. При формировании зеленого листа они делятся и превращаются в хлоропласты. Например, в клетке закончившего рост листа пшеницы содержится около 150 хлоропластов. В органах растений, запасающих крахмал, например в клубнях картофеля, крахмальные зерна формируются и накапливаются в пластидах, называемых амилопластами. Как выяснилось, амилопласты, как и хлоропласты, образуются из тех же пропластид и содержат такую же ДНК, как хлоропласты. Они формируются в результате дифференцировки пропластид по другому пути, чем у хлоропластов. Известны случаи превращения хлоропластов в амилопласты и наоборот. Например, часть амилопластов превращается в хлоропласты при позеленении клубней картофеля на свету.В ходе созревания плодов томатов и некоторых других растений, а также в лепестках цветков и осенних красных листьях хлоропласты превращаются в хромопласты - органеллы, содержащие оранжевые пигменты каротиноиды. Такое превращение связано с разрушением структуры тилакоидов гран и приобретением органеллой совершенно иной внутренней организации. Эту перестройку пластиде диктует ядро, и она осуществляется с помощью особых белков, кодируемых в ядре и синтезируемых в цитоплазме. Например, кодируемый в ядре 58 кДа полипептид, образующий комплекс с каротиноидами, составляет половину всего белка мембранных структур хромопласта. Так, на основе одной и той же собственной ДНК в результате ядерно-цитоплазматического влияния пропластида может развиваться в зеленый фотосинтезирующий хлоропласт, белый, содержащий крахмал амилопласт или оранжевый, заполненный каротиноидами хромопласт. Между ними возможны превращения. Это интересный пример различных путей дифференцировки органелл на основе одной и той же собственной ДНК, но под влиянием ядерно-цитоплазматического "диктата".

2.3Строение хлоропласта.

Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Связь внутренней мембраны хлоропласта с мембранными структурами внутри него хорошо прослеживается на примере мембран ламелл стромы. В этом случае внутренняя мембрана хлоропласта образует узкую (шириной около 20нм.) складку, которая может простираться почти через всю пластиду. Таким образом, ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой.

Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами. Число тилакоидов на одну грану варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом как бы связывают между собой отдельные граны хлоропластов. Однако полости камер тилакоидов всегда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы.

В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.

В хлоропластах содержатся различные пигменты. В зависимости от вида растений это:

хлорофилл:

Хлорофилл А (сине-зеленый) - 70 % (у высших растений и зеленых водорослей);

Хлорофилл В (желто-зеленый) - 30 % (там же);

Хлорофилл С, D и E встречается реже - у других групп водорослей;

Осуществляется процесс фотосинтеза в листьях растений. Фотосинтез свойствен лишь зеленым растениям. Эту важнейшую сторону деятельности листа полнее всего характеризует К. А. Тимирязев:

Можно сказать, что в жизни листа выражается самая сущность растительной жизни. Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались - в растении ли, в животном или в человеке, - прошли через лист, произошли из веществ, выработанных листом.

Строение листьев растений

Листья растений по анатомическому строению отличаются большим разнообразием, которое зависит и от вида растения, и от условий их роста. Лист сверху и снизу покрыт эпидермисом - покровной тканью с многочисленными отверстиями, называемыми устьицами. Под верхним эпидермисом расположена палисадная, или столбчатая паренхима, называемая ассимиляционной. Под ней находится более рыхлая ткань - губчатая паренхима, за которой идет нижний эпидермис. Весь лист пронизан сетью жилок, состоящих из проводящих пучков, по которым проходят вода, минеральные и органические вещества. Поперечный разрез листа. В столбчатой и губчатой ткани листа расположены зеленые пластиды - хлоропласты, содержащие пигменты. Наличием хлоропластов и содержащихся в них зеленых пигментов (хлорофиллов) объясняется окраска растений. Огромная листовая поверхность, достигающая 30 000 - 50 000 кв. м на 1 га у разных растений, хорошо приспособлена для успешного поглощения СО 2 из воздуха в процессе фотосинтеза. Углекислый газ проникает в лист растения через устьица, расположенные в эпидермисе, поступает в межклетники и, проникая через оболочку клеток, попадает в цитоплазму, а затем в хлоропласты, где и осуществляется процесс ассимиляции. Образующийся в этом процессе кислород диффундирует с поверхности хлоропластов в свободном состоянии. Таким образом, через устьица осуществляется газообмен листьев с внешней средой - поступление углекислого газа и выделение кислорода в процессе фотосинтеза, выделение углекислого газа и поглощение кислорода в процессе дыхания. Кроме того, устьица служат для выделения паров воды. Несмотря на то, что общая площадь устьичных отверстий составляет лишь 1-2% всей листовой поверхности, тем не менее при открытых устьицах углекислый газ проникает в листья со скоростью, превышающей в 50 раз поглощение его щелочью. Количество устьиц очень велико - от нескольких десятков до 1500 на 1 кв. мм.

Хлоропласты

Хлоропласты - зеленые пластиды, в которых происходит процесс фотосинтеза. Они расположены в цитоплазме. У высших растений хлоропласты имеют дискообразную или линзовидную форму, у низших они более разнообразны.
Хлоропласты в клетках зеленых растений. Размер хлоропластов у высших растений довольно постоянен, составляя в среднем 1 -10 мк. Обычно в клетке содержится большое количество хлоропластов, в среднем 20-50, а иногда и больше. Расположены они главным образом в листьях, много их в незрелых плодах. В растении общее количество хлоропластов огромно; во взрослом дереве дуба, например, площадь их равняется 2 га. Хлоропласт имеет мембранную структуру. От цитоплазмы он отделен двухмембранной оболочкой. В хлоропласте находятся ламеллы, белково-липоидные пластинки, собранные в пучки и называемые гранами. Хлорофилл расположен в ламеллах в виде мономолекулярного слоя. Между ламеллами находится водянистая белковая жидкость - строма; в ней встречаются крахмальные зерна и капли масла. Строение хлоропласта хорошо приспособлено к фотосинтезу, так как разделение хлорофиллоносного аппарата на мелкие пластинки значительно увеличивает активную поверхность хлоропласта, что облегчает доступ энергии и перенос ее к химическим системам, участвующим в фотосинтезе. Данные А. А. Табенцкого показывают, что хлоропласты все время изменяются в онтогенезе растения. В молодых листьях наблюдается мелкогранулярная структура хлоропластов, в листьях, закончивших рост,- крупногранулярная. В старых листьях уже наблюдается распад хлоропластов. В сухом веществе хлоропластов содержится 20-45% белков, 20-40% липоидов, 10-12% углеводов и других запасных веществ, 10% минеральных элементов, 5-10% зеленых пигментов (хлорофилл а и хлорофилл б ), 1-2% каротиноидов, а также небольшое количество РНК и ДНК. Содержание воды достигает 75%. В хлоропластах имеется большой набор гидролитических и окислительно-восстановительных ферментов. Исследованиями Н. М. Сисакяна показано, что в хлоропластах происходит и синтез многих ферментов. Благодаря этому они принимают участие во всем сложном комплексе процессов жизнедеятельности растения.

Пигменты, их свойства и условия образования

Пигменты можно извлечь из листьев растений спиртом или ацетоном. В вытяжке находятся следующие пигменты: зеленые - хлорофилл а и хлорофилл б ; желтые - каротин и ксантофилл (каротиноиды).

Хлорофилл

Хлорофилл представляет собой
одно из интереснейших веществ на земной поверхности
(Ч. Дарвин), так как благодаря ему возможен синтез органических веществ из неорганических СО 2 и Н 2 О. Хлорофилл не растворяется в воде, под влиянием солей, кислот и щелочей легко изменяется, поэтому было очень трудно установить его химический состав. Для извлечения хлорофилла обычно применяют этиловый спирт или ацетон. Хлорофилл имеет следующие суммарные формулы: хлорофилл а - С 55 Н 72 О 5 N 4 Mg, хлорофилл б - С 55 Н 70 О 6 N 4 Mg. У хлорофилла а больше на 2 атома водорода и меньше на 1 атом кислорода, чем у хлорофилла б . Формулы хлорофилла можно представить и так:
Формулы хлорофилла а и б . Центральное место в молекуле хлорофилла занимает Мg; его можно вытеснить, подействовав на спиртовую вытяжку хлорофилла соляной кислотой. Зеленый пигмент превращается в бурый, называемый феофитином, в котором Мg замещается двумя атомами Н из соляной кислоты. Восстановить зеленый цвет вытяжки очень легко внесением в молекулу феофитина магния или другого металла. Следовательно, зеленый цвет хлорофилла связан с наличием в его составе металла. При воздействии на спиртовую вытяжку хлорофилла щелочью происходит отщепление спиртовых групп (фитола и метилового спирта); в этом случае зеленая окраска хлорофилла сохраняется, что указывает на сохранение ядра молекулы хлорофилла при этой реакции. Химический состав хлорофилла у всех растений одинаков. Содержание хлорофилла а всегда больше (примерно в 3 раза), чем хлорофилла б. Общее количество хлорофилла невелико и составляет около 1 % от сухого вещества листа. По своей химической природе хлорофилл близок к красящему веществу крови - гемоглобину, центральное место в молекуле которого занимает не магний, а железо. В соответствии с этим различаются и их физиологические функции: хлорофилл принимает участие в важнейшем восстановительном процессе в растении - фотосинтезе, а гемоглобин - в процессе дыхания животных организмов, перенося кислород.

Оптические свойства пигментов

Хлорофилл поглощает солнечную энергию и направляет ее на химические реакции, которые не могут протекать без энергии, получаемой извне. Раствор хлорофилла в проходящем свете имеет зеленый цвет, но при увеличении толщины слоя или концентрации хлорофилла он приобретает красный цвет. Хлорофилл поглощает свет не сплошь, а избирательно. При пропускании белого света через призму получается спектр, состоящий из семи видимых цветов, которые постепенно переходят друг в друга. При пропускании белого света через призму и раствор хлорофилла на полученном спектре наиболее интенсивное поглощение будет в красных и сине-фиолетовых лучах. Зеленые лучи поглощаются мало, поэтому в тонком слое хлорофилл имеет в проходящем свете зеленый цвет. Однако с увеличением концентрации хлорофилла полосы поглощения расширяются (значительная часть зеленых лучей также поглощается) и без поглощения проходит только часть крайних красных. Спектры поглощения хлорофилла а и б очень близки. В отраженном свете хлорофилл кажется вишнево-красным, так как он излучает поглощенный свет с изменением длины его волны. Это свойство хлорофилла называется флюоресценцией.

Каротин и ксантофилл

Каротин и ксантофилл имеют полосы поглощения только в синих и фиолетовых лучах. Их спектры близки друг другу.
Спектры поглощения хлорофиллом а и б . Поглощенная этими пигментами энергия передается хлорофиллу а , который является непосредственным участником фотосинтеза. Каротин считают провитамином А, так как при его расщеплении образуются 2 молекулы витамина А. Формула каротина - С 40 Н 56 , ксантофилла - С 40 Н 54 (ОН) 2 .

Условия образования хлорофилла

Образование хлорофилла осуществляется в 2 фазы: первая фаза - темновая, во время которой образуется предшественник хлорофилла - протохлорофилл, а вторая - световая, при которой из протохлорофилла на свету образуется хлорофилл. Образование хлорофилла зависит как от вида растения, так и от ряда внешних условий. Некоторые растения, например проростки хвойных, могут позеленеть и без участия света, в темноте, но у большинства растений хлорофилл образуется из протохлорофилла только на свету. В отсутствие света получаются этиолированные растения, имеющие тонкий, слабый, сильно вытянутый стебель и очень мелкие бледно-желтые листья. Если выставить этиолированные растения на свет, то листья быстро позеленеют. Это объясняется тем, что в листьях уже имеется протохлорофилл, который под воздействием света легко превращается в хлорофилл. Большое влияние на образование хлорофилла оказывает температура; при холодной весне у некоторых кустарников листья не зеленеют до установления теплой погоды: при понижении температуры подавляется образование протохлорофилла. Минимальной температурой, при которой начинается образование хлорофилла, является 2°, максимальной, при которой образование хлорофилла не происходит, 40°. Кроме определенной температуры, для образования хлорофилла необходимы элементы минерального питания, особенно железо. При его отсутствии у растений наблюдается заболевание, называемое хлорозом. По-видимому, железо является катализатором при синтезе протохлорофилла, так как в состав молекулы хлорофилла оно не входит. Для образования хлорофилла также необходимы азот и магний, входящие в состав его молекулы. Важным условием является и наличие в клетках листа пластид, способных к позеленению. При их отсутствии листья растений остаются белыми, растение не способно к фотосинтезу и может жить только до тех пор, пока не израсходует запасы семени. Это явление называется альбинизмом. Оно связано с изменением наследственной природы данного растения.

Количественные отношения между хлорофиллом и усваиваемой углекислотой

При большем содержании хлорофилла в растении процесс фотосинтеза начинается при меньшей интенсивности света и даже при более низкой температуре. С увеличением содержания хлорофилла в листьях фотосинтез возрастает, но до известного предела. Следовательно, нет прямой зависимости между содержанием хлорофилла и интенсивностью поглощения СО 2 . Количество ассимилированного листом СО 2 в час в пересчете на единицу содержащегося в листе хлорофилла тем выше, чем меньше хлорофилла. Р. Вильштеттером и А. Штолем была предложена единица, характеризующая соотношение между количеством хлорофилла и поглощенным углекислым газом. Количество разложенной в единицу времени углекислоты, приходящееся на единицу веса хлорофилла, они назвали ассимиляционным числом . Ассимиляционное число непостоянно: оно больше при малом содержании хлорофилла и меньше при высоком содержании его в листьях. Следовательно, молекула хлорофилла используется более продуктивно при низком его содержании в листе и продуктивность хлорофилла уменьшается с увеличением его количества. Данные введены в таблицу.

Таблица Ассимиляционное число в зависимости от содержания хлорофилла (по Р. Вильштеттеру и А. Штолю)

Растения

в 10г. листьев (мг)

Ассимиляционное число

зеленая раса

желтая раса

16,2 1,2 6,9 82,0
Сирень 16,2 5,8
Этиолированные проростки фасоли после освещения в течение: 6 часов 4 дней
Изданных таблицы видно, что нет прямой зависимости между содержанием хлорофилла и количеством поглощенной СО 2 . Хлорофилл в растениях всегда содержится в избытке и, очевидно, не весь участвует в фотосинтезе. Это объясняется тем, что при фотосинтезе наряду с процессами фотохимическими, которые осуществляются при участии хлорофилла, есть процессы чисто химические, которым свет не нужен. Темновые реакции в растениях протекают значительно медленнее, чем световые. Скорость световой реакции равна 0,00001 секунды, темновой - 0,04 секунды. Впервые темновые реакции в процессе фотосинтеза обнаружены Ф. Блэкманом. Он установил, что темновая реакция зависит от температуры, и с повышением ее скорость темновых процессов увеличивается. Длительность световых реакций ничтожна, поэтому скорость процесса фотосинтеза определяется главным образом продолжительностью темновых процессов. Иногда при благоприятных для фотосинтеза условиях (достаточное количество хлорофилла и света) он протекает медленно. Это объясняется тем, что продукты, образующиеся при фотохимических реакциях, не успевают перерабатываться при темновых. Малое количество хлорофилла позволяет всем образующимся продуктам в фотохимической реакции быстро и полностью перерабатываться при темновой реакции.

Его оболочка состоит из двух мембран - внешней и внутренней, между которыми находится межмембранное пространство. Внутри хлоропласта, путем отшнуровывания от внутренней мембраны, образуется сложная тилакоидная структура. Гелеобразное содержимое хлоропласта называется стромой.

Каждый тилакоид отделен от стромы одинарной мембраной. Внутреннее пространство тилакоида называется люмен. Тилакоиды в хлоропласте объединяются в стопки - граны . Количество гран различно. Между собой они связаны особыми удлиненными тилакоидами - ламеллами . Обычный же тилакоид похож на округлый диск.

В строме содержатся собственное ДНК хлоропластов в виде кольцевой молекулы, РНК и рибосомы прокариотического типа. Таким образом, это полуавтономный органоид, способный самостоятельно синтезировать часть своих белков. Считается, что в процессе эволюции хлоропласты произошли от цианобактерий, начавших жить внутри другой клетки.

Строение хлоропласта обусловлено выполняемой функцией фотосинтеза . Связанные с ним реакции происходят в строме и на мембранах тилакоидов. В строме - реакции темновой фазы фотосинтеза , на мембранах - световой . Поэтому они содержат различные ферментативные системы. В строме содержатся растворимые ферменты, участвующие в цикле Кальвина.

В мембранах тилакоидов содержатся пигменты хлорофиллы и каратиноиды. Все они участвуют в улавливании солнечного излучения. Однако ловят разные спектры. Преобладание того или иного типа хлорофилла в определенной группе растений обуславливает их оттенок - от зеленого до бурого и красного (у ряда водорослей). Большинство растений содержат хлорофилл а .

В строении молекулы хлорофилла выделяют головку и хвост. Углеводный хвост погружен в мембрану тилакоида, а головка обращена к строме и находится в ней. Энергия солнечного света поглощается головкой, приводит к возбуждению электрона, который подхватывается переносчиками. Запускается цепь окислительно-восстановительных реакций, приводящих в конце концов к синтезу молекулы глюкозы. Таким образом энергия светового излучения превращается в энергию химических связей органических соединений.

Синтезируемые органические вещества могут накапливаться в хлоропластах в виде крахмальных зерен, а также выводится из него через оболочку. Также в строме присутствуют жировые капли. Однако они образуются из липидов разрушенных мембран тилакоидов.

В клетках осенних листьев хлоропласты утрачивают свое типичное строение, превращаясь в хромопласты, у которых внутренняя мембранная система проще. Кроме того происходит разрушение хлорофилла, отчего становятся заметными каротиноиды, придающие листве желто-красные оттенки.

В зеленых клетках большинства растений обычно содержится много хлоропластов по форме похожих на немного вытянутый в одном направлении шар (объемный эллипс). Однако у ряда водорослей в клетке может содержаться один огромный хлоропласт причудливой формы: в виде ленты, звездчатый и др.


Происхождение хлоропластов

Общепринятым в настоящее время является представление об эндосимбиотическом происхождении хлоропластов в клетках растений. Хорошо известно, что лишайники представляют собой форму сожительства (симбиоза) гриба и водоросли, при котором зеленые одноклеточные водоросли живут внутри клеток гриба. Предполагают, что таким же путем несколько миллиардов лет назад фотосинтезирующие цианобактерии (синезеленые водоросли) проникли в эукариотические клетки и затем в ходе эволюции потеряли свою автономность, передав большое число важнейших генов в ядерный геном. В результате независимая бактериальная клетка превратилась в полуавтономную органеллу, сохранившую главную исходную функцию - способность к фотосинтезу, однако формирование фотосинтетического аппарата оказалось под двойным ядерно-хлоропластным контролем. Под ядерный контроль перешли деление хлоропластов и сам процесс реализации его генетической информации, которая осуществляется в цепи событий ДНК РНК белок. Неоспоримые доказательства прокариотического происхождения хлоропластов получены при анализе нуклеотидных последовательностей их ДНК.

ДНК рибосомальных генов имеет высокую степень сродства (гомологию) у хлоропластов и бактерий. Сходная нуклеотидная последовательность обнаружена для цианобактерий и хлоропластов в генах АТФсинтазного комплекса, а также в генах аппарата транскрипции (гены субъединиц РНК-полимеразы) и трансляции. Регуляторные элементы хлоропластных генов - промоторы, локализованные в области 35-10 пар нуклеотидов до начала транскрипции, определяющие считку генетической информации, и терминальные нуклеотидные последовательности, определяющие ее прекращение, организованы в хлоропласте, как упоминалось выше, по бактериальному типу. И хотя миллиарды лет эволюции внесли массу изменений в хлоропласт, они не изменили нуклеотидную последовательность хлоропластных генов, и это является неоспоримым доказательством происхождения хлоропласта в зеленом растении от прокариотического предка, древнего предшественника современных цианобактерий.

Строение хлоропластов

В клетках эукариотических водорослей из органелл особенно заметны хроматофоры (хдоропласты) – носители окраски, которые в отличие от хлоропластов высших растений чрезвычайно разнообразны по форме. Хроматофоры, занимающие в клетке в большинстве случаев постенное положение, могут быть чашевидными, в виде кольца, опоясывающего клетку, в виде полого цилиндра, продырявленного многочисленными отверстиями, одной или многих идущих по спирали лент, одной-двух крупных париетальных пластинок, У многих водорослей хлоропласты многочисленны и имеют вид зерен или дисков, сосредоточенных в постенной цитоплазме. Реже хроматофор занимает в клетке центральное положение, тогда чаще всего он состоит из массивной центральной части, от которой к периферии клетки отходят лопасти или гребни.

Среди зеленых водорослей, обладающих сифоновой организацией, различают две большие группы. Водоросли, относящиеся к первой группе, обладают только одним типом пластид – хлоропластами. Это гомопластидные формы. Вторая группа гетеропластидная. У них, помимо хлоропластов, имеются амилопласты. Гомопластидия, гетеропластидия, так же как морфология и положение в клетке пластид, – важные таксономические признаки.

Рис.1. Хлоропласты в растительной клетке

Субмикроскопическое строение хлоропластов водорослей в основных чертах сходно. У эукариотических водорослей хлоропласты ограничены оболочкой, под которой находится тонкозернистый материал матрикса, заключающий уплощенные, одетые мембраной мешочки, или пузыри, – тилакоиды, или диски, содержащие хлорофилл и каротиноиды.

Кроме того, в матриксе хлоропласта находятся рассеянные хлоропластные рибосомы, фибриллы ДНК, липидные гранулы и особые включения – пиреноиды. Однако в деталях тонкого строения, касающихся оболочки, расположения тилакоидов и фибрилл ДНК, места образования и отложения зерен запасных полисахаридов и формы пиреноидов, хлоропласты водорослей обнаруживают весьма постоянные различия, что и позволяет использовать их наряду с набором пигментов, продуктами запаса и строением жгутикового аппарата в качестве таксономических признаков, характеризующих большие группы – отделы водорослей.

Оболочка хлоропласта – перманентная структура, всегда присутствующая даже в тех случаях, когда тилакоидная система не дифференцируется. Например, у хлоропластных мутантов хламидомонаса, не способных образовывать хлорофиллы в темноте, тилакоидная система не наблюдается, а оболочка хлоропласта всегда присутствует. Бесцветная водоросль политома содержит пластиду без ламелл, но с оболочкой.

У зеленых и красных водорослей оболочка хлоропласта образована только двумя параллельными мембранами, у динофитовых и эвгленофитовых водорослей – тремя, а у золотистых, желтозеленых, диатомовых, криптофитовых, рафидофитовых и бурых водорослей, вокруг одетых четырехмембранной оболочкой хлоропластов, имеется сложная система мембран, находящаяся в прямой связи с мембраной ядра, – хлоропластная эндоплазматическая сеть. Расположение тилакоидов в матриксе хлоропласта также неодинаково в разных отделах водорослей, при этом хлоропласты водорослей со сходными пигментами характеризуются и сходным расположением тилакоидов.

Наиболее простое расположение наблюдается у красных водорослей, у которых тилакоиды лежат в матриксе поодиночке. У остальных эукариотических водорослей тилакоиды группируются, образуя ламеллы, причем число тилакоидов, входящих в состав одной ламеллы, постоянно в пределах больших групп, объединяющих родственные водоросли. Есть водоросли, у которых тилакоиды соединяются по два. У золотистых, желто-зеленых, диатомовых, бурых, динофитовых и эвгленофитовых водорослей тилакоиды располагаются преимущественно по три. Обычно между соседними тилакоидами внутри ламеллы имеются промежутки. У зеленых водорослей наиболее вариабельное расположение тилакоидов: число их в ламеллах может колебаться от 2 до 6, а иногда до 20, в таких случаях стопки тилакоидов так тесно прижаты друг к другу, что пространство между соседними тилакоидами исчезает и тогда эти стопки называют гранами. Помимо зеленых водорослей, граны имеются у эвгленофитовых. В хлоропластах золотистых, желто-зеленых, диатомовых и бурых водорослей с трехтилакоидными ламеллами находятся так называемые периферические ламеллы, расположенные параллельно оболочке хлоропласта и окружающие остальные ламеллы, пересекающие хлоропласт, Среди красных водорослей у одних опоясывающие тилакоиды имеются, у других – отсутствуют. У зеленых, – эвгленовых водорослей опоясывающие ламеллы в хлоропластах не обнаружены.

Хлоропласты водорослей из разных отделов различаются и по расположению в них генофоров. Генофоры – это электронно-прозрачные участки, содержащие фибриллы ДНК. Их существование впервые было продемонстрировано в 1962 г. у хламидомонад. В хлоропластах Ch. reinhardtii, Ch. eugametos, Ch. moewusii наблюдались области, которые окрашивались, по Фёльгену, так же интенсивно, как и ядро. Обработка клеток дезоксирибонуклеазой снимала положительную реакцию Фёльгена, а также восприимчивость к окраске акридиноранжем как в хлоропласте, так и в ядре. Электронные микрофотографии вскрыли в этих участках хлоропласта, обнаруживающих положительную реакцию Фёльгена, присутствие чувствительных к ДНК-азе фибрилл. Позднее и у других водорослей было доказано существование хдоропластной ДНК. У красных водорослей, например у Laurencia spectabilis, электронно-прозрачные участки, содержащие фибриллы ДНК, как и у хламидомонад, рассеяны беспорядочно по матриксу хлоропласта. Такое же беспорядочное расположение генофоров в хлоропластах свойственно и динофитовым водорослям. Напротив, у исследованных бурых водорослей кольцевидный генофор располагается под ламеллой. Такое же локализованное под опоясывающей ламеллой расположение генофора описано у желтозелепых и диатомовых водорослей. У золотистых водорослей существование хдоропластной ДНК доказано ауторадиографически, у эвгленофитовых как ауторадиографически, так и с помощью методов экстракции.

Только у зеленых водорослей крахмал откладывается в матриксе хлоропласта между ламеллами и вокруг пиреноида, у зеленых водорослей, лишенных пиреноида, крахмал откладывается, как правило, в строме хлоропласта. Лишь у некоторых дазикладальных крахмальные зерна обнаружены как в хлоропластах, так и свободно в цитоплазме. Кроме того, выявлено, что у Cuuleгрa prolifera при разрушении оболочки амилопластов крахмал переходит в цитоплазму. У зеленых сифоновых водорослей, помимо хлоропластов, имеющих амилопласты, крахмал откладывается в обоих типах пластид: в амилопластах зерна крахмала крупнее, чем в хлоропластах. Амилопласты отличаются от хлоропластов по ультраструктуре. Все тело амилопласта обычно заполнено одним крупным крахмальным зерном, тилакоиды практически отсутствуют. У всех остальных водорослей запасные вещества откладываются вне хлоропласта – в цитоплазме.

Хлоропласты эукариотических водорослей содержат особые включения – пиреноиды. Это не означает, что пиреноиды встречаются у всех представителей данного отдела. Так, среди зеленых водорослей пиреноиды отсутствуют у всех дазикладальных, у ряда гетеропластидных бриопсидальиых. Среди бурых водорослей пиреноид имеется у видов с изогамным и гетерогамным половым процессом, у более высокоорганизованных форм с оогамным половым процессом пиреноид, как правило, отсутствует. В ряде случаев пиреноиды приурочены лишь к какой-либо стадии жизненного цикла. Например, у некоторых фукальных пиреноид встречается в хлоропластах яйцеклеток, но отсутствует в пластидах вегетативных клеток; наоборот, у эустигматофициевых пиреноиды имеются в пластидах вегетативных клеток, но не зооспор. Пиреноиды могут находиться как внутри хлоропласта, так и выдаваться за его пределы, но и в последнем случае они заключены в оболочку хлоропласта. Пиреноид имеет гранулярную белковую строму, в которую у одних видов ламеллы внедряются, а у других этого не наблюдается. Расположение тилакоидов в строме пиреноида неодинаково.

У зеленых водорослей матрикс пиреноида отделяется от матрикса собственно хлоропласта гранулами или пластинками крахмала. Подобно ядру и митохондриям, хлоропласты, содержащие свои собственные ДНК, являются самовоспроизводящимися органеллами, которые размножаются путем деления. В ряде случаев передача потомству пластидного аппарата осуществляется только через одну из гамет, например у зигнемы и других коньюгатофициевых. У этих водорослей наблюдается физиологическая анизогамия, при которой хлоропласты мужской гаметы отмирают, У эдогониума передача хлоропласта также происходит через яйцеклетку, так как хлоропласт сперматозоида крайне редуцирован. То же относится к вошерии, сперматозоиды которой лишены хлоропласта.

Во многих случаях наблюдаются перемещения хлоропластов в клетке. Так, при высокой интенсивности света хлоропласт мезотениума поворачивается боковой частью к свету. В клетках мужоции изменение ориентации хлоропластов от фронтальной к профильной также обусловлено светом, причем имеет значение не только его интенсивность, но и спектральный состав. Вызываемая светом миграция хлоропластов наблюдалась и у Eremosphaera viridis: при низких и средних интенсивностях света хлоропласты располагаются по периферии клетки, в темноте и на ярком свету они собираются вокруг крупного центрального ядра, образуя плотную сферу, у Dictyota dichotoma также отмечено движение хлоропластов, вызванное светом. На слабом свету хроматофоры располагаются вдоль клеточных стенок, которые перпендикулярны к направлению света. При ярком же освещении они перемещаются на боковые стенки, параллельные световому лучу. Такова же реакция хроматофоров коровых клеток Funis vesiculosus, где расположение пластид определяется направлением падающего света.

Функции хлоропластов

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии. В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином. Ферредоксин затем вновь окисляется, отдавая этот водород веществу-восстановителю, сокращенно обозначаемому НАДФ. НАДФ переходит в восстановленную форму - НАДФ-H2. Таким образом, итогом световых реакций фотосинтеза является образование АТФ, НАДФ-H2 и кислорода, причем потребляются вода и энергия света.

В АТФ аккумулируется много энергии - она затем используется для синтезов, а также для других нужд клетки. НАДФ-H2 - аккумулятор водорода, причем легко его затем отдающий. Следовательно, НАДФ-H2 является химическим восстановителем. Большое число биосинтезов связано именно с восстановлением, и в качестве поставщика водорода в этих реакциях выступает НАДФ-H2. Далее, с помощью ферментов стромы хлоропластов, т. е. вне гран, протекают темновые реакции: водород и энергия, заключенная в АТФ, используются для восстановления атмосферного углекислого газа (CO2) и включения его при этом в состав органических веществ. Первое органическое вещество, образующееся в результате фотосинтеза, подвергается большому числу перестроек и дает начало всему многообразию органических веществ, синтезирующихся в растении и составляющих его тело. Ряд из этих превращений происходит тут же, в строме хлоропласта, где имеются ферменты для образования Сахаров, жиров, а также все необходимое для синтеза белка. Сахара могут затем либо перейти из хлоропласта в другие структуры клетки, а оттуда в другие клетки растения, либо образовать крахмал, зерна которого часто можно видеть в хлоропластах. Жиры тоже откладываются в хлоропластах или в виде капель, или в форме более простых веществ, предшественников жиров, выходят из хлоропласта.
Усложнение веществ сопряжено с созданием новых химических связей и обычно требует затрат энергии. Источник ее - все тот же фотосинтез.

Дело в том, что значительная доля веществ, образующихся в результате фотосинтеза, вновь распадается в гиалоплазме и митохондриях (в случае полного сгорания - до веществ, которые служат исходным материалом для фотосинтеза, - CO2 и H2O). В результате этого процесса, по своей сути обратного фотосинтезу, энергия, ранее аккумулированная в химических связях разлагаемых веществ, освобождается и - снова через посредство АТФ - тратится на образование новых химических связей синтезируемых молекул. Таким образом, существенная часть продукции фотосинтеза нужна только для того, чтобы связать энергию света и, превратив ее в химическую, использовать для синтеза совсем других веществ. И лишь часть органического вещества, образующегося при фотосинтезе, используется как строительный материал для этих синтезов.

Продукция фотосинтеза (биомасса) колоссальна. За год на земном шаре она составляет около 1010 т. Органические вещества, создаваемые растениями, - это единственный источник жизни не только растений, но и животных, так как последние перерабатывают уже готовые органические вещества, питаясь либо непосредственно растениями, либо другими животными, которые, в свою очередь, питаются растениями. Таким образом, в основе всей современной жизни на Земле лежит фотосинтез. Все превращения веществ и энергии в растениях и животных представляют собой перестройки, перекомбинации и переносы вещества и энергии первичных продуктов фотосинтеза. Фотосинтез важен для всего живого и тем, что одним из его продуктов является свободный кислород, происходящий из молекулы воды и выделяющийся в атмосферу. Полагают, что весь кислород атмосферы образовался благодаря фотосинтезу. Он необходим для дыхания как растениям, так и животным.

Хлоропласты способны перемещаться по клетке. На слабом свету они располагаются под той стенкой клетки, которая обращена к свету. При этом они обращаются к свету своей большей поверхностью. Если свет слишком интенсивен, они поворачиваются к нему ребром и; выстраиваются вдоль стенок, параллельных лучам света. При средних освещенностях хлоропласты занимают положение, среднее между двумя крайними. В любом случае достигается один результат: хлоропласты оказываются в наиболее благоприятных для фотосинтеза условиях освещения. Такие перемещения хлоропластов (фототаксис) - это проявление одного из видов раздражимости у растений. Хлоропласты обладают известной автономией в системе клетки. В них имеются собственные рибосомы и набор веществ, определяющих синтез ряда собственных белков хлоропласта. Имеются также ферменты, работа которых приводит к образованию липидов, входящих в состав ламелл, и хлорофилла. Хлоропласт располагает и автономной системой добывания энергии. Благодаря всему этому хлоропласты способны самостоятельно строить собственные структуры. Существует даже взгляд, что хлоропласты (как и митохондрии) произошли от каких-то низших организмов, поселившихся в растительной клетке и сперва вступивших с нею в симбиоз, а затем ставших ее составной частью, органоидом.

Еще одной очень важной функцией является, усвоение углекислоты в хлоропласте или, как принято говорить, фиксация углекислоты, то есть включение ее углерода в состав органических соединений, происходят в сложном цикле реакций, открытом Кальвином и Бенсоном и получившем их имя. За это открытие им была присуждена Нобелевская премия.



Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция - фотосинтез.

Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы. У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.

У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.

Хлоропласты в клетках развиваются из пропластид или путем деления надвое ранее существующих.

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.


Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами . Граны связаны между собой удлиненными тилакоидами - ламеллами .

Полужидкое содержимое хлоропласта называется стромой . В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. ).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов - это фотосинтез - синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.